Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 3(1): 8, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646893

RESUMO

BACKGROUND: Monitoring bladder cancer over time requires invasive and costly procedures. Less invasive approaches are required using readily available biological samples such as urine. In this study, we demonstrate a method for longitudinal analysis of the urine proteome to monitor the disease course in patients with bladder cancer. METHODS: We compared the urine proteomes of patients who experienced recurrence and/or progression (n = 13) with those who did not (n = 17). We identified differentially expressed proteins within various pathways related to the hallmarks of cancer. The variation of such pathways during the disease course was determined using our differential personal pathway index (dPPi) calculation, which could indicate disease progression and the need for medical intervention. RESULTS: Seven hallmark pathways are used to develop the dPPi. We demonstrate that we can successfully longitudinally monitor the disease course in bladder cancer patients through a combination of urine proteomic analysis and the dPPi calculation, over a period of 62 months. CONCLUSIONS: Using the information contained in the patient's urinary proteome, the dPPi reflects the individual's course of bladder cancer, and helps to optimise the use of more invasive procedures such as cystoscopy.


Bladder cancer must be closely monitored for progression, but this requires expensive and invasive procedures such as cystoscopy. Less invasive procedures using readily available samples such as urine are needed. Here, we present an approach that measures the levels of various proteins in the urine. We compare protein levels at different points during the disease course in patients with bladder cancer, and show this helps to flag disease recurrence and the need for medical intervention. Our approach could help clinicians to determine which patients require more invasive testing and treatment.

2.
J Proteomics ; 268: 104714, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36058542

RESUMO

One of the most important livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) genetic lineages is the clonal complex (CC) 398, which can cause typical S. aureus-associated infections in people. In this work, whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics were applied to study the genetic characteristics of three MRSA CC398 isolates recovered from humans (strains C5621 and C9017), and from an animal (strain OR418). Of the three strains, C9017 presented the broadest resistance genotype, including resistance to fluroquinolone, clindamycin, tiamulin, macrolide and aminoglycoside antimicrobial classes. The scn, sak, and chp genes of the immune evasion cluster system were solely detected in OR418. Pangenome analysis showed a total of 288 strain-specific genes, most of which are hypothetical or phage-related proteins. OR418 had the most pronounced genetic differences. RNAIII (δ-hemolysin) gene was clearly the most expressed gene in OR418 and C5621, but it was not detected in C9017. Significant differences in the proteome profiles were found between strains. For example, the immunoglobulin-binding protein Sbi was more abundant in OR418. Considering that Sbi is a multifunctional immune evasion factor in S. aureus, the results point to OR418 strain having high zoonotic potential. Overall, multiomics biomarker signatures can assume an important role to advance precision medicine in the years to come. SIGNIFICANCE: MRSA is one of the most representative drug-resistant pathogens and its dissemination is increasing due to MRSA capability of establishing new reservoirs. LA-MRSA is considered an emerging problem worldwide and CC398 is one of the most important genetic lineages. In this study, three MRSA CC398 isolates recovered from humans and from a wild animal were analyzed through whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics in order to gather systems-wide omics data and better understand the genetic characteristics of this lineage to identify distinctive markers and genomic features of relevance to public health.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Transcriptoma , Aminoglicosídeos , Animais , Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Clindamicina , Biologia Computacional , Humanos , Imunoglobulinas , Gado , Macrolídeos , Staphylococcus aureus Resistente à Meticilina/genética , Proteoma , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética
3.
Antibiotics (Basel) ; 11(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35326828

RESUMO

Coagulase-negative staphylococci are commensals that are known to be prevalent in most environments, and they are also an important reservoir of antimicrobial-resistant genes. Staphylococcal infections in animal husbandry are a high economic burden. Thus, we aimed to determine the prevalence and species diversity of methicillin-resistant coagulase-negative staphylococci (MRCoNS) in poultry slaughtered for human consumption and to study the antimicrobial resistance of the isolates. Swab samples were recovered from 220 commercial chickens, homebred chickens and quails. Species identification was performed using MALDI-TOF. Antimicrobial susceptibility testing was performed by the disc diffusion method against 14 antimicrobials. The presence of antimicrobial-resistant genes was investigated by polymerase chain reaction. Totals of 11 (19.6%), 13 (20.3%), and 51 (51%) MRCoNS were isolated from commercial chickens, homebred chickens and quails, respectively. S. lentus was isolated from all homebred chickens, whereas 11 S. lentus and 2 S. urealyticus were isolated from commercial chickens. As for quails, the most prevalent MRCoNS were S. urealyticus. Almost all isolates had a multidrug-resistant profile and carried the mecA gene. Most isolates showed resistance to erythromycin, clindamycin, penicillin, tetracycline, ciprofloxacin and fusidic acid and harbored the ermA, ermB, ermC, mphC tetK, tetL, tetM and tetO genes. This study showed a frequent occurrence of multidrug resistance in MRCoNS isolated from healthy poultry in Portugal.

4.
Antibiotics (Basel) ; 11(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326837

RESUMO

Donkeys (Equus asinus) are in decline in Europe. Occupational exposure to farm animals has been associated with increased staphylococci carriage. We aimed to isolate S. aureus and coagulase-negative staphylococci (CoNS) from donkeys and handlers and characterize the antimicrobial resistance profiles and genetic lineages of S. aureus strains. Oral and nasal swab samples were collected from 49 Miranda donkeys and 23 handlers from 15 different farms. Staphylococci species were identified by MALDI-TOF MS. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Molecular typing was performed in S. aureus isolates. From the 49 donkey samples, 4 S. aureus (8.2%) and 21 CoNS (42.9%) were isolated. Ten handlers (43.5%) were carriers of S. aureus and 4 (17.4%) carried CoNS. The CoNS isolates showed resistance to several classes of antimicrobials encoded by the mecA, aph (3')-IIIa, ant (4')-Ia, tetM, tetK, lnuA, ermB, ermC, dfrA and dfrG genes. S. aureus isolates were resistant to penicillin, aminoglicosides and tetracycline harboring the blaZ, aph (3')-IIIa, tetL, tetM and tetK genes. All S. aureus isolates from donkeys belonged to ST49 and spa-type t208 while the strains isolated from the handlers were ascribed to 3 STs and 7 spa-types. However, human isolates were from different STs than the donkey isolates. Donkeys are mainly colonized by methicillin-resistant S. sciuri. S. aureus transmission between donkeys and their handlers appears not to have occurred since the isolates belonged to different genetic lineages.

5.
Antibiotics (Basel) ; 11(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203842

RESUMO

Owls are nocturnal predators that inhabit urbanized and farmlands. They are in direct contact with other animals, both livestock and small wild rodents that they mostly feed on. Staphylococci can be both commensal and pathogenic bacteria that are widespread across the various ecological niches. We aimed to isolate staphylococci from owls and to characterize their antimicrobial resistance, virulence factors and genetic lineages. Swab samples were collected from the throat and cloaca of 114 owls admitted to two rehabilitation centers in Portugal. The identification of staphylococci species was performed by MALDI-TOF. Staphylococci antimicrobial resistance and virulence genes were investigated by means of the disk diffusion method and PCR. Staphylococcus aureus isolates were characterized by MLST, agr and spa-typing. Of the tested animals, 66 isolates were recovered, including 10 different species of staphylococci, of which 25 were coagulase-positive (CoPS) and 41 were coagulase-negative (CoNS). Twenty-three S. aureus were isolated, of which one mecC-MRSA was identified. The isolates were mainly resistant to penicillin, aminoglycosides, clindamycin and tetracycline. mecC-MRSA belonged to ST1245 and spa-type t843 and the remaining S. aureus were ascribed to 12 STs and 15 spa types. A high diversity of clonal lineages was identified among the S. aureus isolated from wild owls. Owls feed mainly on small rodents often exposed to waste and anthropogenic sources, which may explain the moderate prevalence of S. aureus in these animals.

6.
Microorganisms ; 10(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056595

RESUMO

Hospital wastewaters often carry multidrug-resistant bacteria and priority pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Pathogens and antibiotic resistance genes present in wastewaters may reach the natural environment facilitating their spread. Thus, we aimed to isolate MRSA from wastewater of 3 hospitals located in the north of Portugal and to characterize the isolates regarding the antimicrobial resistance and genetic lineages. A total of 96 wastewater samples were collected over six months. The water was filtered, and the filtration membrane was immersed in BHI broth supplemented with 6.5% of NaCl and incubated. The inoculum was streaked in ORSAB agar plates for MRSA isolation. The isolates susceptibility testing was performed against 14 antimicrobial agents. The presence of resistance and virulence genes was accessed by PCR. Molecular typing was performed in all isolates. From the 96 samples, 28 (29.2%) were MRSA-positive. Most isolates had a multidrug-resistant profile and carried the mecA, blaZ, aac(6')-Ie-aph(2″)-Ia, aph(3')-IIIa, ermA, ermB, ermC, tetL, tetM, dfrA dfrG and catpC221 genes. Most of the isolates were ascribed to the immune evasion cluster (IEC) type B. The isolates belonged to ST22-IV, ST8-IV and ST105-II and spa-types t747, t1302, t19963, t6966, t020, t008 and tOur study shows that MRSA can be found over time in hospital wastewater. The wastewater treatment processes can reduce the MRSA load. The great majority of the isolates belonged to ST22 and spa-type t747 which suggests the fitness of these genetic lineages in hospital effluents.

7.
Antibiotics (Basel) ; 10(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34827354

RESUMO

Natural aquatic environments represent one of the most important vehicles of bacterial dissemination. Therefore, we aimed to isolate staphylococci from surface waters and to investigate the presence of antimicrobial resistance genes and virulence factors as well as the genetic lineages of all Staphylococcus aureus isolates. Staphylococci were recovered from water samples collected from 78 surface waters, including rivers, streams, irrigation ditches, dams, lakes, and fountains. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Multilocus sequence typing and spa-typing were performed in all S. aureus isolates. From the 78 water samples, 33 S. aureus, one S. pseudintermedius, and 51 coagulase-negative staphylococci (CoNS) were identified. Among the S. aureus isolates, four MRSA were identified, and all harbored the mecC gene. Fourteen S. aureus were susceptible to all antimicrobials tested and the remaining showed resistance to penicillin, erythromycin and/or tetracycline encoded by the blaZ, ermT, msr(A/B), tetL, and vgaA genes. Regarding the clonal lineages, one mecC-MRSA isolate belonged to spa-type t843 and sequence type (ST) 130 and the other three to t742 and ST425. The remaining S. aureus were ascribed 14 spa-types and 17 sequence types. Eleven species of CoNS were isolated: S. sciuri, S. lentus, S. xylosus, S. epidermidis, S. cohnii spp. urealyticus, S. vitulinus, S. caprae, S. carnosus spp. Carnosus, S. equorum, S. simulans, and S. succinus. Thirteen CoNS isolates had a multidrug resistance profile and carried the following genes: mecA, msr(A/B), mph(C), aph(3')-IIIa, aac(6')-Ie-aph(2'')-Ia, dfrA, fusB, catpC221, and tetK. A high diversity of staphylococci was isolated from surface waters including mecCMRSA strains and isolates presenting multidrug-resistance profiles. Studies on the prevalence of antibiotic-resistant staphylococci in surface waters are still very scarce but extremely important to estimate the contribution of the aquatic environment in the spread of these bacteria.

9.
Molecules ; 25(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784722

RESUMO

Ozone has a high wound healing capacity and antibacterial properties and can be used as a complementary treatment in infections. Methicillin-resistant S. aureus (MRSA) is the most common pathogen found in infected diabetic foot ulcers. Most of MRSA are resistant to several classes of antibiotics and, therefore, there is a need for new, effective, and well-tolerated agents. Thus, we aimed evaluate the antimicrobial and antibiofilm potentials of ozonated vegetable oils against MRSA strains isolated from diabetic foot ulcers. Six ozonated oils were produced with concentrations of ozone ranging from 0.53 to 17 mg of ozone/g of oil. The peroxide values were determined for each oil. Ozonated oils content on fatty acid was determined by gas chromatography equipped with a flame ionization detector. The antimicrobial susceptibility testing was performed by the Kirby-Bauer disk diffusion method and the effect of ozonated oils on biofilm formation ability and on established biofilms was investigated. In general, the content in identified unsaturated fatty acid in oils decreased with the increase of ozonation time and, consequently, the peroxide value increased. Most bacterial strains were inhibited by ozonated oil at a concentration of 4.24 mg/g. Ozonated oils had moderate to high ability to remove adhered cells and showed a high capacity to eradicate 24 h old biofilms. Our results show promising use of ozonated oils on the treatment of infections, in particular those caused by multidrug-resistant MRSA strains.


Assuntos
Biofilmes/efeitos dos fármacos , Pé Diabético/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Óleos/química , Ozônio/química , Ozônio/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Adesão Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana
11.
Inorg Chem ; 59(13): 9116-9134, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32578983

RESUMO

The interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)n] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Fenantrolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Cobre/química , Cobre/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Fenantrolinas/síntese química , Fenantrolinas/metabolismo , Ligação Proteica , Soroalbumina Bovina/metabolismo
12.
OMICS ; 24(2): 81-95, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32073998

RESUMO

Antibiotic resistance and hospital acquired infections are on the rise worldwide. Vancomycin-resistant enterococci have been reported in clinical settings in recent decades. In this multiomics study, we provide comprehensive proteomic and transcriptomic analyses of a vancomycin-resistant Enterococcus faecalis clinical isolate from a patient with a urinary tract infection. The previous genotypic profile of the strain C2620 indicated the presence of antibiotic resistance genes characteristic of the vanB cluster. To further investigate the transcriptome of this pathogenic strain, we used whole genome sequencing and RNA-sequencing to detect and quantify the genes expressed. In parallel, we used two-dimensional gel electrophoresis followed by MALDI-TOF/MS (Matrix-assisted laser desorption/ionization-Time-of-flight/Mass spectrometry) to identify the proteins in the proteome. We studied the membrane and cytoplasm subproteomes separately. From a total of 207 analysis spots, we identified 118 proteins. The protein list was compared to the results obtained from the full transcriptome assay. Several genes and proteins related to stress and cellular response were identified, as well as some linked to antibiotic and drug responses, which is consistent with the known state of multiresistance. Even though the correlation between transcriptome and proteome data is not yet fully understood, the use of multiomics approaches has proven to be increasingly relevant to achieve deeper insights into the survival ability of pathogenic bacteria found in health care facilities.


Assuntos
Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Proteoma , Transcriptoma , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Resistência Microbiana a Medicamentos , Enterococcus faecalis/classificação , Genoma Bacteriano , Genótipo , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/classificação
13.
Mater Sci Eng C Mater Biol Appl ; 106: 110104, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753374

RESUMO

Multifunctional nanoparticles have emerged as an outstanding candidate for a new generation of biomedical applications, mainly due to their remarkable properties and biocompatibility. Individual reports on multi-metal, semiconducting and superparamagnetic nanoparticles (SPIONs), elucidating on each's unique intrinsic properties, have demonstrated that the biological application of such materials is highly dependent of their size, shape, surface nature and core nature. However, reviews combining nanoparticles with multiple properties, as fluorescence and paramagnetism, as well as, biocompatibility, toxicology and biodegradability are yet seldom. This review highlights the highest output advances, of the last decade, on synthetic procedures for the design of multifunctional magneto-luminescent hybrid nanosystems based on quantum dots, SPIONs and mesoporous silica nanoparticles, as well as, surface modifications and their role for biological applications.


Assuntos
Nanopartículas/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Química Verde , Humanos , Nanopartículas de Magnetita/química , Microscopia Confocal , Nanopartículas/metabolismo , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Pontos Quânticos/química , Semicondutores
17.
Materials (Basel) ; 11(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082665

RESUMO

The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant (EHL) is a Type II Ribosome Inactivating Protein (RIP). Type II RIPs have shown anti-cancer properties and have great potential as therapeutic agents. Similarly, colloidal gold nanoparticles are successfully used in biomedical applications as they can be functionalised with ligands with high affinity and specificity for target cells to create therapeutic and imaging agents. Here we present the synthesis and characterization of gold nanoparticles conjugated with EHL and the results of a set of initial assays to establish whether the biological effect of EHL is altered by the conjugation. Gold nanoparticles functionalised with EHL (AuNPs@EHL) were successfully synthesised by bioconjugation with citrate gold nanoparticles (AuNPs@Citrate). The conjugates were analysed by UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential analysis, and Transmission Electron Microscopy (TEM). Results indicate that an optimal functionalisation was achieved with the addition of 100 µL of EHL (concentration 1090 ± 40 µg/mL) over 5 mL of AuNPs (concentration [Au°] = 0.8 mM). Biological assays on the effect of AuNPs@EHL were undertaken on Caenorhabditis elegans, a free-living nematode commonly used for toxicological studies, that has previously been shown to be strongly affected by EHL. Citrate gold nanoparticles did not have any obvious effect on the nematodes. For first larval stage (L1) nematodes, AuNPs@EHL showed a lower biological effect than EHL. For L4 stage, pre-adult nematodes, both EHL alone and AuNPs@EHL delayed the onset of reproduction and reduced fecundity. These assays indicate that EHL can be conjugated to gold nanoparticles and retain elements of biocidal activity.

18.
ChemistryOpen ; 7(1): 3, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29318092

RESUMO

Invited for this month's cover picture is the BIOSCOPE group of Professors Carlos Lodeiro and José Luis Capelo at the REQUIMTE/UCIBIO-LAQv-FCT University NOVA of Lisbon (Portugal), and their collaborators. The cover picture is devoted to Translational Research, and shows the Portuguese Flag represented by the interaction between cells and Janus gold/silver nanoparticles functionalized with rhodamine (red) and Fluorescein (green) dyes as tools for biomedical translational research. Read the full text of their Review at 10.1002/open.201700135.

19.
ChemistryOpen ; 7(1): 7-8, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29318094
20.
ChemistryOpen ; 7(1): 9-52, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29318095

RESUMO

Red and green are two of the most-preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune-staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most-relevant results on the use of red and green fluorescent dyes in the fields of bio-, chemo- and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron-dipyrromethene (BODIPY), 7-nitobenz-2-oxa-1,3-diazole-4-yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P-oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...